
Hydroflow: A Model and Runtime for Distributed

Systems Programming

Mingwei Samuel
Joseph M. Hellerstein, Ed.
Alvin Cheung, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2021-201

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-201.html

August 16, 2021

Copyright © 2021, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

HydroĲow: A Model and Runtime for Distributed Systems
Programming

b\ MingZei SamXel

Research Project

SXbmiWWed WR Whe DeSaUWmenW Rf ElecWUical EngineeUing and CRmSXWeU ScienceV,
UniYeUViW\ Rf CalifRUnia aW BeUkele\, in SaUWial VaWiVfacWiRn Rf Whe UeTXiUemenWV fRU Whe
degUee Rf Master of Science, Plan II.

ASSURYal fRU Whe ReSRUW and CRmSUehenViYe E[aminaWiRn:

Committee:

PURfeVVRU AlYin CheXng
ReVeaUch AdYiVRU

(DaWe)

* * * * * * *

PURfeVVRU JRVeSh M. HelleUVWein
SecRnd ReadeU

(DaWe)

Joe Hellerstein
8/13/2021

akcheung
8/15/2021

Hydroflow: A Model and Runtime for Distributed
Systems Programming

Mingwei Samuel
mingwei@berkeley.edu

University of California, Berkeley

ABSTRACT
The cloud gives everyone the power of in�nite computing
resources, but programming distributed systems is hard. Cur-
rent programming models require very precise and error-
prone reasoning about network reliability and message han-
dling, and frequent expensive coordination stages in which
all nodes have to communicate to reach consensus.

In this paperwe present our ongoingwork onH��������,
a new cloud programming model used to create construc-
tively correct distributed systems. The model is a re�nement
and uni�cation of the existing data�ow and reactive pro-
gramming models. Like data�ow, H�������� is based on
an algebra of operators which execute in streaming fashion
across multiple nodes. However in H�������� data passed
between operators can be of any lattice type, represented
using a compositional lattice sub-language. These features
allow us to construct provably monotonic distributed pro-
grams which can always make forward progress without
incurring the high cost of coordination.
H�������� is primarily a low-level compilation target

for future declarative cloud programming languages, but
developers can use it directly to precisely control program
execution or �ne-tune and debug compiled programs.

1 INTRODUCTION
The cloud presents the abstraction of in�nite computational
resources, but writing applications that can scale to harness
this power is incredibly di�cult. Conventional programming
models are not well suited for writing general applications
on a scaling, distributed platform. Application developers
are left stringing together webs of expert-built black-box
enterprise services, each with their own separate consistency
requirements and guarantees—requirements and guarantees
that don’t optimize for program semantics and break when
combined.

Monotonicity provides a powerful lens on distributed com-
puting. It o�ers simple and e�cient strategies to deal with
complex distributed problems, letting us signi�cantly speed
up applications. This work builds on the CALM Theorem
[12], which shows that all monotonic programs have a dis-
tributed implementationwhich is consistent and coordination-
free.A���, a partitioned multi-master key-value store (KVS),

runs two orders of magnitude faster than state-of-the-art
multiprocessor key-value stores by avoiding coordination
using a design based on monotonic state [24].
Our goal is to bring the power of these concepts to gen-

eral application development, through the H�������� pro-
gramming model. Developers can use H�������� to build
programs that are constructively monotonic and therefore
can be safely and automatically distributed and scaled up
or down. H�������� combines the existing data�ow and
reactive programming models into a uni�ed model that can
ensure monotonicity through its use of lattice-based state.
A H�������� program speci�es a directed graph of op-

erators which are executed on single nodes or partitioned
across multiple nodes. The operator algebra is designed so
that we can determine many high-level properties by the
composition of operators in a graph, most importantly mono-
tonicity. H�������� is implemented in the Rust program-
ming language, an increasingly popular choice known for
its memory safety and speed [20]. Our implementation uses
Rust’s type system to represent properties of individual op-
erators, and in turn these are used to ensure correctness and
derive higher-level properties as operators are composed
into a graph.

H�������� serves as the low-level compilation target for
the declarative H����L���� cloud programming language
as part of the Hydro Project [6]. H�������� is designed so
that we will be able to automatically and correctly transform
a graph to optimize its performance and scalability during
the compilation process. These transformations will include
conventional relational algebra-style “logical” transforma-
tions as well as “physical” transformations to the ways that
operators are distributed and partitioned across nodes.

Ensuring monotonicity is a primary goal of H��������,
however some programs require non-monotonicity. Our cur-
rent implementation is of the main monotonic subset of H��
�������, but in the future we will also provide the ability
to write non-monotonic code which may require explicit
coordination. This will make H�������� fast and safe-by-
default while still allowing developers to use coordination
when it is truly needed.

The following subsection 1.1 describes how this project
relates to existing work. Section 2 reviews the theoretical
background of monotonicity and the CALM Theorem, and

1

Mingwei Samuel

connects these concepts to existing data�ow and reactive
programming models. Section 3 explains how H��������
uni�es those models and augments them with monotonicity
guarantees. Section 4 describes how we actualized these con-
cepts in our initial implementation of H��������. Finally,
Section 5 outlines ongoing and future work on this project.

1.1 Related Work
Existing languages meant for programming distributed sys-
tems include B����, L���,G��������, and others. B���� [2]
is a high-level declarative programming language originating
from Datalog [3]. Programs in B���� opreator on unordered
collections which can be though of as set or map lattices.
Tools bundled with the B���� interpreter let developers
identify monotonic and non-monotonic parts of programs
to determine if and where coordination is needed. B����L

[7] extends B���� with compositional lattices-based datas-
tructures in much the same style as we have in H��������.
Unlike B����, H�������� is imperative and low-level, and
B���� is interpreted while H�������� is compiled. We
hope to eventually use H�������� as a compilation target
to speed up B����-style programs.

CRDTs are distributed data structures used to synchronize
particular variables in general programs in an eventually
consistent way. State-based CRDTs are a sub-category which
can often be thought of as semilattices [16, 21]. The L���
programming language allows developers to compose and
link CRDTs in a functional reactive programming-style [16].
G�������� [17] extends Java with the ability to replicate

objects across nodes in a distributed setting. G�������� uses
a rich type system to statically checks the correctness of
operations at compile-time. H�������� also aims to be cor-
rect at compile-time and express similar properties through
Rust’s type system. We also use G��������’s monotonic tests
which are boolean expressions which trigger actions once
they become true, and afterwards always remain true.
LV��� [13] is a programming model implemented as a

Haskell library which is also based on lattices. Like H��
�������, LV��� ensures constructive monotonicity by rep-
resenting state using lattices. However LV��� is not meant
for distributed systems; it allows consistent use of shared
memory by �nite-running applications in a single-machine
setting. H�������� does not use shared memory and is
intended for general long-running distributed programs.
Data�ow research builds on a long history of query pro-

cessing over both stored and streaming data in database
systems. This paper argues that data�ow can be framed
in a monotonic way which explains its relative simplicity
and success in distributed environments. Noteworthy dis-
tributed data�ow systems in production includeM��R�����
[9], S���� [26], and B��� [1]. Much of the existing work

in these managed systems focuses on high-level execution
details such as membership and error-retrying. Other high-
level managed systems include Orleans [5], Dask [14], and
Ray [18] provide actor, promise, and/or stream abstractions
through their distributed platforms. The current implemen-
tation of H�������� only focuses on low-level single-node
execution, and multi-node execution through explicit com-
munication channels. We expect that monotonicity will sim-
plify many of these high-level concerns when we reach them
in the future.

The connections we make between data�ow, reactive pro-
gramming, and state are related to di�erential data�ow [15]
(used by Timely [19]) which frames data�ow in way which is
incrementally-computable across a distributed system. A re-
lated concept is partially-stateful data�ow used by theN����
database [10]. These techniques are conventionally used to
maintain up-to-date materialized views of database queries
rather than represent general distributed applications.

2 THEORY
The CALM Theorem tells us: “a program has a consistent,
coordination-free distributed implementation if and only if
it is monotonic” [12]. A function 5 : (!) is monotonic if
it preserves a partial ordering of its domain to a (possibly
di�erent) partial ordering of its codomain.

0 v(1 =) 5 (0) v) 5 (1) (monotonicity) [8]

The original statement of the CALM Theorem de�nes mono-
tonicity using the subset-orderings (✓) of sets (and) ; our
de�nition is a straightforward generalization of that one. In-
tuitively, new inputs can never cause a monotonic function
to retract previous conclusions, so computations can speed
ahead without the need to backtrack or coordinate.
A join semilattice consists of a domain of elements and a

binary join relation de�ned over those elements, also known
as the least upper bound (supremum). A meet semilattice con-
sists of a domain and a binary meet relation or greatest lower
bound (in�mum). As these two structures are dually equiva-
lent, we use lattice to refer to both, and merge to refer to the
binary relation.

A lattice merge t on a domain (is de�ned as having the
following three properties, for all 0,1, 2 2 (:

0 t (1 t 2) = (0 t 1) t 2 (associative)
0 t 1 = 1 t 0 (commutative)
0 t 0 = 0 (idempotent)

[8]

Together we refer to these as the ACI properties. These prop-
erties induce a partial ordering on (. Given 0,1 2 (, if the
merge of 0 and 1 results in 1 then we can say “0 precedes 1”

2

Hydroflow: A Model and Runtime for Distributed Systems Programming

or “1 dominates 0”:

0 v 1 ⌘ 0 t 1 = 1 (lattice partial order) [8]

If the merge of 0 and 1 results in a new third value then 0
and 1 are incomparable.
A function 5 : (!) from lattice domain (to lattice

codomain) is amorphism1 if it structurally preservesmerges,
i.e. for all 0,1 2 (:

5 (0 t(1) = 5 (0) t) 5 (1) (morphism) [8]

The lattice partial order means morphisms are a special sub-
set of monotonic functions over lattices. Importantly, mor-
phisms are di�erentially computable2. For example, if we
have some state I B 5 (0 t 1 t 2) and we want to extend
this computation to a fourth value 3 2 (, we can compute
I 0 B I t 5 (3) which avoids recomputation on 0,1, 2 . Note
that due to the ACI properties of merge t this computation
can process elements in any order and is una�ected by du-
plicates. Intuitively, this means that a system that represents
state using lattices can easily be impervious to message re-
ordering and duplication. It turns out that this framing of
computation has direct connections to traditional data�ow
programming.

2.1 Data�ow
Data�ow is a programming model where independent func-
tions, called operators, are composed into a directed graph.
Elements of data “�ow” along the edges of the graph and are
transformed by each operator. Operators such as map and
�lter operate on single elements of data, while fold3 sits at
the end of a chain of operators and combines all the arriving
elements together into a single value.
This model of programming has a natural connection to

lattice morphisms. Instead of thinking in terms of individual
elements we can instead think of the set of all elements that
pass through an operator over time. In this framing, each
element operator represents a morphism over the set-union
lattice, and each individually arriving element can be thought
of as a singleton set, or a small delta to the overall set.
In Figure 1 we see a simple example data�ow on the bot-

tom in green, and a lifted view of the data�ow in terms of sets
above in blue. Given individual inputs ~ and I the data�ow
computes 5 (6(~)) and 5 (6(I)) using element-wise functions
5 and 6. In the lifted framing we view the corresponding
functions big � and ⌧ as morphisms over sets of elements.
1Because both the domain and codomain are semilattice spaces, semilattice
homomorphism is the most precise term.
2Di�erential computation is a generalization of incremental computation:
incremental computation operates on a sequence of changes to a particular
piece of data, avoiding redundant work but inducing a total order on the
data’s state. Di�erential computation works with independent partially
ordered updates to the data which is essential in a distributed context [15].
3Also called reduce, aggregate, or accumulate.

-
map

morphism ⌧
�lter

morphism �
� (⌧ (-))

map 6 �lter 5
5 (6(~))
5 (6(I))

~
I

Set<U> Set<V> Set<V>

U V V

Figure 1: The bottom, in green, represents a simple
data�ow program with a map 6 : U ! V and �lter 5
on V. Both U and V are single-element types. The top,
in blue, is a lifted view of the data�ow which can be
thought of as operating on the complete set of U (or V)
elements all at once.

If we view the data�ow output as a set as a set then these
views are equivalent, where . and / are the singleton sets
containing ~ and I respectively:�

5 (6(~)), 5 (6(I))

= � (⌧ (.)) [� (⌧ (/)) = � (⌧ (. [/))

This is a simple example, but we can viewmany data�ow pro-
grams in this way, as a composition of monotonic morphisms
over set-union lattices.
However, our morphism-centric perspective can be ex-

tended beyond just set-union lattices. We can fold the output
elements of an operator together using any lattice merge
functiont of our choosing, and themergewill be structurally
preserved over preceding data�ow operations.

� (⌧ (.)) t � (⌧ (/)) = � (⌧ (. t /))
This applies to any combinations of lattice types; any mor-
phism can be represented and di�erentially computed in this
streaming fashion.
This modelling only covers unary operators, but binary

operators (e.g., joins, unions) which handle multiple input
streams are essential in data�ow applications. However the
obvious generalization of morphisms 5 (0 t 1, ~ t I) =
5 (0,~) t 5 (1, I) is not useful; an 5 which computes Cartesian
product, a di�erentially computable and monotonic opera-
tion, fails to meet the above as the right-hand side cannot
provide pairs in (0, I) and (1,~). Monotonic modelling of
binary operators is covered in section 3.2.

In the context of the CALM Theorem, this modelling pro-
vides a mathematical basis to justify why the data�ow model
is so successful in distributed computing. Data�ow systems
often require (or gain signi�cant performance if) users spec-
ify associative and commutative fold functions [1, 9]. In this
case the operators can be viewed as structure-preserving
morphisms and this means the data�ow’s execution can be
coordination-free and highly scalable.

2.2 Reactive Programming
Reactive programming is a model where chains of opera-
tors are re-run when input values change. It is similar to

3

Mingwei Samuel

MTT 5
(set cardinality)

MTT 5
(set cardinality)

fold [
requires state

Set<U> N

U Set<U> N

Figure 2: The pipeline before the fold (bottom left, in
green) looks like data�ow. After the fold the pipeline
looks like reactive programming. The fold does not
have an e�ect on the lifted view (in blue), but after the
fold the reactive pipeline and the lifted view match.

the data�ow model in that data moves through a graph of
operations but unlike data�ow, computations are not run
incrementally on independent elements (deltas) but instead
are re-run on complete input values on updates. Tradition-
ally, reactive programming is used to build responsive user
interfaces which update in real time to changes in data [4].
However for our purposes it provides a model to handle
non-morphism monotonic computations.
We refer to monotone functions that are not lattice mor-

phisms asmonotone tricky, abbreviatedMTT . They are tricky
because they are not di�erentially computable and do not
preserve the ACI properties of lattices. A simple example of
an MTT function is set cardinality: given a set, return the
number of elements in the set. This is clearly monotonic; the
cardinality of the set grows as elements are added to the in-
put. But it is not idempotent: card ({0,1}) + card ({1, 2}) = 4,
while card ({0,1} [{1, 2}) = 3. Operationally, we have the
problem that if we try to compute set cardinality on the el-
ements passing through a data�ow pipeline one at a time,
we have no way to detect duplicated elements and enforce
idempotence.

However, if we accumulate the entire set of elements then
computing cardinality is trivial. Figure 2 shows this setup: to
transition from a data�ow of individual elements to a whole
set we can fold all the elements using set-union ([). Then to
compute cardinality we simply take in the entire set as input
and count the elements it contains. When the set grows,
we once again take in the entire updated set as input and
once again count elements. This is reactive programming: we
operate on the whole value (in our example, a set) repeatedly.

3 THE HYDROFLOW MODEL
In this section we describe the H�������� model, and how
it builds upon data�ow and reactive programming. Like other
streaming paradigms, H�������� is modelled as a directed
graph where each vertex is an operator doing computation
and data �ows along the edges between operators. In the
monotonic subset of H��������, each edge has a speci�c

lattice type and elements �owing through the edge are in-
stances of that lattice.

The overall graphmay be partitioned into subgraphswhich
are run on separate nodes or groups of nodes. A node corre-
sponds to a single CPU thread, and nodes may be distributed
between threads within a process, between multiple pro-
cesses, or between multiple machines. To cross node bound-
aries, elements are sent through inter-thread or IPC channels,
or across the network. We avoid using shared memory as it
signi�cantly inhibits multi-core scalability under contention
[24].
Like with data�ow and reactive programming in Figures

1 and 2, all data that �ows through an edge represents a
single lifted value. Unlike data�ow, in H�������� the lat-
tice type of the lifted value matches the lattice type of the
edge. This is more powerful than data�ow: data�ow uses
single elements which can be though of as singleton sets,
whereas H�������� allows any lattice types. For the set-
union lattice, elements can be singletons but also can be sets
containing multiple items, which is a natural way to mathe-
matically represent “batches” of data. Elements could also be
max-int lattice points representing counters, or map-union
lattice points representing data in a key-value store. The
speci�c lattice types currently provided by H�������� are
listed later in section 4.1.

3.1 Delta and Cumulative Edges
Edges in a H�������� graph are marked as either delta
edges or cumulative edges. These types denote certain se-
mantics and requirements for the sequence of lattice ele-
ments which �ow along that edge. An operator is capable of
outputting a stream of delta elements, cumulative elements,
or both (which can be modelled as two output edges).

Semantically, a delta edge represents a stream of updates
which ideally are small (in a physical representation sense)
and non-redundant. However delta edges have no require-
ments for correctness other than that elements must be in-
stances of the edge’s lattice type; any stream of lattice ele-
ments is valid in a delta edge. Just as individual elements
�owing through a data�ow graph can be seen in a lifted
view as singletons representing a larger set (section 2.1), in-
dividual lattice elements �owing through delta edges are
small lattice values which when merged together represent
a larger lattice value.
To assemble the “whole” lattice value from a delta edge,

we can merge t together a stream of delta elements: when
a new element arrives, we merge it into the existing state
and produce a new cumulative value. These sequences of
values are what cumulative edges carry. In H�������� a
special fold operator called a StateMergeOp does exactly
this; it takes in a delta edge, merges together each element

4

Hydroflow: A Model and Runtime for Distributed Systems Programming

successively, then outputs a cumulative edge which provides
a view of the sequence of merged values to downstream op-
erators.These cumulativevalues are “whole” in the sense that
they are the cumulative merge of a history of delta values
up to the current moment. Cumulative edges correspond to
reactive programming as described in Section 2.2.

E������ 1. Consider a simple single-node key-value store.
We use a map-union lattice to represent the KVS’s state in a
StateMergeOp. A map-union lattice is a table from a growing
set of static keys to growing lattice values. To merge two map-
union lattices, we union the entries and resolve con�icting keys
by marging their corresponding values (section 4.1). Write
operations are lattices to be merged into the StateMergeOp;
each write is represented by a single-item map-union lattice
element (key, value). In this example the input stream of
writes is a delta edge; each element is a small update to the
overall state. Meanwhile the output of the StateMergeOp is a
cumulative edge which provides all the stored keys and values.

As they represent “whole” values, we can do more with a
cumulative edge than with a delta edge. An operator which
computes a monotone tricky function such as cardinality
requires a cumulative edge as input. As the simple KVS in
Example 1 does not support deleting keys, it would be �ne to
compute the cardinality (number of keys) in the KVS using
the view provided by the cumulative edge, however it would
of course be wrong to count keys by looking at individual
writes on the delta input. This may seem obvious, but both
the cumulative overall state and the individual delta writes
are represented using the same map-union lattice type, so
it’s important to keep track of this distinction.
The uniformity between cumulative and delta edge ele-

ments means that the same mechanisms can handle both. A
morphism can be computed in a streaming data�ow fashion
on a delta edge, or in a reactive fashion over a cumulative
edge.

From a type theory perspective, cumulative edges can be
thought of as a subtype of delta edges: it would always be
correct, but not generally e�cient, to treat a cumulative edge
as a delta edge. The reverse it not true, as cumulative edges
have an important correctness requirement: each successive
element must dominate the previous. A sequence of elements
from a cumulative edge have a total ordering which follows
a path through the lattice partial ordering: for a sequence
of lattice elements -1,-2,-3, . . . we have that 8 < 9 implies
-8 v - 9 .

Delta edges do not have any requirements on their lattice
elements, but we have brought up the notion of “e�ciency”
of delta elements. Practically speaking, we of course want to
avoid transmitting redundant information along edges, so
a sequence of delta elements is e�cient if the elements are
small and contain minimal redundant information.

E������ 2. As an expository example for delta e�ciency,
we compare two ways to represent a set-union lattice {3, 5, 8, 9}
using delta values. A delta sequence {3}, {8}, {5, 9} is e�cient—
the sets contains no redundant intersecting elements. But a
sequence {8}, {3, 5, 8}, {3, 8, 9}, {5, 9} which results in the exact
same overall set is clearly ine�cient—it contains redundant
elements and data. In fact, the last value {5, 9} is entirely
redundant as it contains no new elements.

Not all lattice types have e�cient delta representations.
Set-union lattices clearly do as they can be split into small
disjoint subsets, however max-int lattices do not—the lattice
is linear so there is no way to break the update into smaller
pieces (representing the update as +1 would not use t and
wouldn’t be idempotent).

E������ 3. Consider a set-union lattice representing el-
ements 1 to 100. If we generate those elements in order, it’s
clearly cheap to to transmit 100 singleton integer sets {1}, {2},
{3}, · · · as deltas than to transmit the growing cumulative
sets {1}, {1, 2}, {1, 2, 3}, · · · . In contrast, consider a max-int
lattice which grows from 1 to 100. To transmit this we send
1, 2, 3, · · · as deltas. However, this is exactly identical to the
cumulative representation—the deltas are no smaller and in
fact are identical.

Some composed lattices, such as a map-union lattice of max-
int values, fall into a middle ground where some aspects of
delta values can be broken up and some cannot. In general,
the “compactness” of delta values depends on the speci�cs
of the lattice and its representation in memory. Note that
because lattice merges are idempotent, this notion of “ef-
�ciency” doesn’t matter for correctness but is a practical
concern.

As mentioned we can turn a delta edge into a cumulative
edge with a StateMergeOp, but we can also use the stored
state to remove redundant data from the delta elements,
making them more e�cient. Given a incoming element XG
and existing lattice state G , we can �nd the smallest (in a
practical memory-usage sense) element XG 0 such that:

G t XG = G t XG 0

and output these compact XG 0 values as a new delta edge.
For example in a set-union lattice we can use set di�erence to
remove redundant (i.e. previously-seen) members in a set:

XG 0 : XG \ G
This means a StateMergeOp has both a cumulative output
edge and and a delta output edge, as shown in Figure 3. The
StateMergeOp enforces that these two edges are in sync: a
supplied cumulative element dominates all past delta ele-
ments. This is used to ensure new operators will not miss
any elements if dynamically added, described in section 3.3.

5

Mingwei Samuel

t
{8}, {3, 5, 8}, {3, 8, 9}, {5, 9}

delta in

{8}, {3, 5, 8}, {3, 5, 8, 9}
cumulative out

{8}, {3, 5}, {9}
minimized delta out

Figure 3: An example of how a StateMergeOpworks us-
ing the set-union delta sequence from Example 2. The
operator receives the set-union elements on the left,
in listed order. The cumulative out edge provides the
entire set of elements with each update. The delta out
edge outputs elements that have been minimized to
remove redundant elements. Note that the �nal input
element {5, 9} has no e�ect on the outputs since it is
entirely dominated.

We have a few options to convert a cumulative edge back
into a delta edge. First of all a cumulative edge can be di-
rectly viewed per-element as a delta edge, but this is clearly
ine�cient as each element will contain a lot of redundant
information. However we can use the a StateMergeOp just
like above to minimize redundant parts of each element,
producing an e�cient delta output stream.
Note that cumulative edges require order guarantees as

each successive element must be dominate the previous. An
unreliable network could violate this requirement by reorder-
ing elements. Conventional reactive programs either run
on a single node or experience momentary “glitched” views
of inconsistent data [4]. In H�������� we limit cumulative
elements to single nodes: cumulative edges are not allowed
to cross node boundaries . If we want to send a cumulative
edge across nodes we need to use a StateMergeOp to convert
it into deltas, send those over the boundary, then use another
StateMergeOp to re-merge them together on the other side
(in any order!).

3.2 Binary Operators and Joins
Binary operators like join are essential for expressing most
applications. Database and data�ow systems usually use a
handful of monolithic join operators that cannot be decom-
posed into smaller components. Because H�������� deals
with general lattice types rather than just sets of tuples, we
require more expressive binary operators. In this section we
outline how H�������� can compute general monotonic
binary functions.

We call a binary function 5 : ' ⇥ (!) monotonic if it is
monotonic in each of its inputs. This is equivalent to a unary
monotonic function over the product domain of ' and (. For
0,1 2 ' and G,~ 2 (:

0 v' 1, G v(~ =) 5 (0, G) v) 5 (1,~)
(monotonic binary function)

X0 t' 5 (0, X~)

5 (X0,~)t(X~

X0

0

X~

~

Figure 4: Di�erential computation of a split binary
morphism. The two cylinders (teal and brown) are
StateMergeOps which receive delta inputs and produce
both delta and cumulative outputs. The two 5 nodes
(violet) are identical halves of the same binary opera-
tor; they are split to reveal the two delta paths and to
show that the structure is identical to symmetric hash
join.

A simple way to evaluate a monotonic binary function is
by taking both inputs through cumulative edges. Each time
either input is updated, the function completely recomputes
its output. This is correct for all monotonic binary functions
but is ine�cient for collection-like lattices.

We de�ne another sub-class ofmonotonic binary functions
which are e�ciently computable. This class include joins and
join-like functions. We call a function 5 : ' ⇥ (!) a split
binary morphism if it is a morphism in each of its arguments.
For lattices 0, X0 2 ' and ~, X~ 2 (:

5 (0 t' X0, ~) = 5 (0,~) t) 5 (X0,~)
5 (0, ~ t(X~) = 5 (0,~) t) 5 (0, X~)

(split binary morphism)

This construction is a di�erentially computable monotonic
binary function. 0 and ~ are cumulative values, and 5 (0,~)
is the previously computed output. When a X0 delta arrives,
we can output 5 (X0,~) as a delta, and symmetrically when a
X~ delta arrives, we output 5 (0, X~).

As they require both cumulative and delta input edges
for both arguments, split binary morphism will always be
somewhere after StateMergeOps. Operators which preserve
both cumulative and delta edges such as morphisms can exist
between the StateMergeOp and split binary morphism. If '
and (are collection-like lattices, then a join can be expressed
simply with a function 5 which computes the join between
each pair of lattice element instance as they arrive. In fact,
this creates a structure identical to symmetric hash join, a
fundamental join algorithm for highly-pipelined streaming
joins [23, 25], as shown in Figure 4.

6

Hydroflow: A Model and Runtime for Distributed Systems Programming

t
(set union)

6(B) : |B |
(cardinality)

5 (=) :
= � 10

Set<Vote> delta
SetUnion<Vote>

Set<Vote> cum.
SetUnion<Vote>

Int cum.
Max<Int>

Bool cum.
Max<Bool>

Figure 5: A chain of operators which counts votes. Each edge is labelled with its domain, edge type (cumulative or
delta), and lattice type (as listed in Table 1). Once ten votes are counted, the �nal boolean lattice predicate becomes
true, which may trigger other actions downstream. If this edge is followed by a dynamic split points we can mark
it with a >-stone. Otherwise we can remove the operators in reverse order, back to the nearest split.

3.3 Dynamic Graphs
For some applications we will need H�������� to express
dynamic graphs. We can extend a H�������� graph by
adding either new ingresses which send data to the graph,
or new egresses which read data from the graph (or both).
The former, sending additional data through new edges to
the graph, is correct and monotonic in general. All elements
are lattices so the merging of new data will always result in
monotonic growth following the lattice order (or no change).
As for the later, cumulative edges are the key to dynamic
extension which receive data from the graph. Each element
from a cumulative edge encompasses all past history which
lets us “replay history” for a newly added operator. This
means that new operators must be attached at some point af-
ter a StateMergeOp. Once attached, the new operator imme-
diately receives past history via a cumulative element, then
can continue to receive delta and/or cumulative elements
as needed. Note that H�������� does not allow arbitrary
attachment points for extensions, we instead mark speci�c
edges as allowing them.

Removing operators from the graph breaks monotonicity
in the general case, however there are speci�c situations
where it is okay because an edge can no long have an e�ect
on the system. Lattice types may have a �nal top element,
denoted >, which is a value that dominates all other values:
G v > for all G in the lattice domain [8]. For example, a
Max<Bool> lattice can only switch from false to true, so
true is >. We can also augment other lattices types with
a top, for example we can de�ne a ceiling for a max-int
lattice, or a �nite domain for a set-union lattice. Once > is
transmitted through an edge no new elements can a�ect its
output. In this situation we can do a couple things depending
on the graph’s dynamic split points.
If a dynamic split point follows the edge then we must

remember that the edge has reached > for any future exten-
sions. To optimize for this case we can mark the edge with
a single > bit, and then can remove any lattice state and
mechanisms for handling updates. We call this technique >-
stoning (“top-stoning”) since it is similar to using tombstones
to delete values [12, 16, 21].

Furthermore, if there aren’t dynamic split points following
the >-ed edge, we can completely remove that edge. Transi-
tively, each preceding edge can also be removed as long as
there are no other (dynamic or static) split points branching
o�. An example is shown in Figure 5.

3.4 Other Aspects of H��������
This subsection covers aspects of the H�������� model
that are still under development.

3.4.1 Non-Monotonicity. InH�������� non-monotonic op-
erators are marked as “tainted.” This taint comes from func-
tions that make non-monotonic observations or depend on
non-deterministic computations. These functions are clearly
labelled for developer visibility and for code analysis tools.
Simple rules determine how this taint spreads: each operator
that consumes data from a non-monotonic operators is also
tainted, creating a non-monotonic subgraph.
Using terminology from B����, these non-monotonic

areas are unresolved points of order [2]. At these points in-
consistent behavior arises due to a dependence on order that
may not be enforceable in a distributed setting. Develop-
ers can deal with these points in several ways. The most
straightforward option is to ensure order through explicit
coordination. This will have a high cost if the coordination
is invoked on each data element on a hot path. Another pos-
sibility is to designate a single node or group of coordinated
nodes to handle the point of order, though this of course has
liveness tradeo�s. A third option (presented in B���� [2]) is
to simply tolerate inconsistency in the style of Helland and
Campbell’s “memories, guesses and apologies” [11]. This en-
codes an amount of non-determinism into the application’s
semantics: operators may make reasonable “guesses” based
on incomplete information. If later the guess turns out to be
false an “apology” is issued in order to correct the error. It is
an open problem to develop language support to guarantee
properties of such design patterns.

3.4.2 Cyclic Graphs. Cyclic graphs are used in Datalog and
recursive SQL queries, and in some data�ow systems like
Timely [19]. There is no need to reach �xed-point if a H��
������� graph contains a cycle as long as the entire cycle

7

Mingwei Samuel

is monotonic. Note that it is also possible to construct
monotonic cycles that have unbounded outputs,4 such as a
loop which continually increments a max-int. Currently it
is up to the developer to avoid spinning in�nitely this way,
though in the future we may develop automated tools that
can detect these situations

3.4.3 Partitioning and Bundles. Any lattice type - can be
partitioned using amap-union lattice; just use- as the nested
lattice for the values. We can transform operators in a similar
way: take an operator on - and use a separate instance on
each key in a map-union lattice. A pipeline created in this
way acts as a “bundle” of pipelines, with a “strand” for each
key.

Currently our implementation will see a bundle only as a
single pipeline, so metadata and > information isn’t tracked
separately for each “strand” of the bundle, but in the future
it might be useful to make bundles a �rst-class construct.
Bundles may be useful not just for local grouping of data,
but also for partitioning in space, across multiple nodes.
Interestingly, other lattice types can also be thought of

as bundles. A dominating-pair lattice (described in section
4.1) of (X,Y) is similar to a “forgetful” map-union lattice of
Map<X,Y>where keys X traverse a lattice order as time passes.
In a sense, this is a special type of partitioning—partitioning
through time. This is an interesting concept, but may or may
not prove to be useful.

3.4.4 Garbage collection. Garbage collection is a major issue
in distributed systems that cannot be brushed under the
rug. Some monotonic mechanisms such as >-stoning and
dominating-pair lattices can be thought of as limited types
of garbage collection, however in general garbage collection
is non-monotonic and will require coordination.

Unlike coordination for explicit non-monotonicity, we can
probably coordinate garbage collection in the background
rather than on a hot data path and avoid a lot of its costs. This
would allow monotonic operators to continue running while
coordination for garbage-collection is happening. However
actually implementing this is future work.

4 IMPLEMENTATION
H�������� is implemented as a Rust library5 and provides
abstractions for lattice composition, function types (includ-
ing monotonic functions, unary morphisms, and split binary
morphisms), operator construction, and graph execution.
The implementation makes heavy use of Rust’s type system
to represent abstract properties of operators and ensure their
correct composition.

4In Datalog this is known as an “unsafe rule.”
5H�������� is available under the Apache 2 license at https://github.com/
hydro-project/hydro�ow/.

Table 1: Lattice Merge Functions

Merge Domain Merge

Max, Min Totally-ordered
domains, Ord.

Picks the larger, smaller
element.

Union,
Intersect

Collections. Unions, intersects sets.

MapUnion⇤ Maps and pair
collections.

Unions keys, sub-merges
intersecting values.

Pair⇤† Lattice pair
tuples (X,Y).

Sub-merges both X and
Y.

Dominat-
ingPair⇤‡

Lattice pair
tuples (X,Y).

Picks the pair whose X
dominates the other’s.
Otherwise sub-merges
both X and Y.

⇤Higher-order lattices compose with one or more sub-lattice types.
†Also known as coordinatewise order [8].
‡PairLattice in A��� [24], also known as lexicographic order [8].

4.1 Lattices
H�������� provides a library of composable lattice types,
listed in Table 1. Min and Max express totally-ordered lat-
tices, using Rust’s standard Ord trait. Set-Union and Inter-
section provide monotonically growing and shrinking col-
lections on static domains. The remaining lattice types are
higher-order and compose with sub-lattice types. MapUnion
provides a table from a growing set of static keys to growing
lattice values. When we merge two MapUnion lattices we
resolve any “con�icting” keys by simply merging their corre-
sponding values.6 A Pair lattice is a simple product pairing
of two sub-lattices. Finally, a DominatingPair lattice is a
pairing of two sub-lattices where the �rst can be though of
as a “version” for the second. When merging if one version
dominates the other then that element is picked. Otherwise
if the two versions “con�ict,” either because they are equal
or because they are incomparable, then both sub-lattices are
merged.

Importantly, lattice types are not used directly as their own
ad-hoc datastructures, but instead as �exible labels which
can be paired with an underlying physical representation.
This separation of lattice type and physical representation
allows H�������� to represent both delta and cumulative
collection-like lattice elements with no overhead relative to
conventional data�ow. As listed in Table 2, the physical rep-
resentation of a Union<T> lattice could be an actual set type

6Note that this is not equivalent to a set-union lattice of (K,V) pairs, as the
set does not merge the values of intersecting keys

8

https://github.com/hydro-project/hydroflow/
https://github.com/hydro-project/hydroflow/

Hydroflow: A Model and Runtime for Distributed Systems Programming

Table 2: Representations for Collection-like Lattices

Set<T> Map<K,V> Description

HashSet<T> HashMap<K,V> Any size; requires
hashable keys.

BTreeSet<T> BTreeMap<K,V> Any size; requires
totally-ordered keys.

Vec<T> Vec<K,V> Any size vector; a batch.

[T; N] [(K,V); N] Size N array; a batch.⇤

Single<T> Single<(K,V)> Size one; single item.

Option<T> Option<(K,V)> Size one or zero; �ltered
item.

Library-provided collection representations. Developers can also specify
custom representations if needed.
⇤A bit-masked version of �xed-sized arrays is also provided but not listed.

such as HashSet<T> or BTreeSet<T>, or could be a batch rep-
resented via a low-overhead collection like Vec<T> or �xed-
size array [T; N], or could be single elements via Single<T>
or Option<T>. We have a lot of power to tailor a lattice’s
representation to our needs; for example, Single<T>s can
be used as deltas to match data�ow’s execution model of
single elements streaming through operators, or �xed-size
arrays can be used as explicit batches. Fixed-size arrays can
also be used with SIMD or tensor processors to speed up
compute-heavy workloads. Developers may specify custom
representations if they need even more control, but are re-
sponsible for the correctness of their implementation.

LatticeRepr types combine a lattice type with a repre-
sentation. LatticeRepr is a trait which provides ::Lattice
and ::Repr associated types which can be used to get the lat-
tice and representation types respectively. This arrangement
allows us to compose lattice types and their representations
in a natural structure which can be validated by the Rust
type-checker. H�������� includes LatticeRepr types for
each lattice type, and uses special TAG types as names to de-
note the underlying collection representation. These features
are shown in Figure 6.
When provided to operators and user-de�ned functions,

lattice element representations are wrapped in the Hide
struct. This struct contains a direct representation of the
underlying item, so it has no overhead, but tags the item as
either an delta or cumulative at compile-time. Hide blocks
access to non-monotonic properties and functions on the
underlying value, as well as monotone tricky functions if the
value is not marked as cumulative. For monotonic functions,
Hide provides a modi�ed version of the function such that
the return type is also wrapped with Hide.

1 type KvsLatRepr = MapUnionRepr<TAG::HASH_MAP,
2 String,
3 DominatingPairRepr<MaxRepr<u32>, MaxRepr<String>>
4 >
5

6 // KvsLatRepr::Lattice
7 MapUnion<
8 String,
9 DominatingPair<Max<u32>, Max<String>>
10 >
11

12 // KvsLatRepr::Repr
13 HashMap<String, (u32, String)>

Figure 6: An example of a composed lattice type for a
hashmap-based key-value store with string keys and
integer-timestamped string values, where newer val-
ues overwrite older ones. Lines 1-4 show how a lattice
and representation are de�ned together in a Lattice-
Repr type. Lines 7-10 shows the derived lattice type
and line 13 shows the derived physical representation.

1 #[repr(transparent)]
2 pub struct Hide<Y: Qualifier, Lr: LatticeRepr>
3 {
4 value: Lr::Repr,
5 }
6

7 Hide<Cumulative, KvsLatRepr>
8 Hide<Delta, KvsLatRepr>

Figure 7: A simpli�ed version of the Hide struct (lines
1-5). #[repr(transparent)] ensures the struct’s layout
exactly matches the underlying value’s, so conversion
is free. The Qualifier generic parameter tags an ele-
ment with Cumulative or Delta. Lines 7 and 8 show
how Hide is used with the lattice type from Figure 6.

1 pub trait Merge<Other: LatticeRepr>:
2 LatticeRepr<Lattice = Delta::Lattice>
3 {
4 /// Merge �other� into �this� in-place.
5 fn merge(
6 this: &mut Self::Repr,
7 other: Other::Repr);
8 }

Figure 8: A simpli�ed version of the Merge trait. If lat-
tice representation A implements Merge then a B
can be merged into an A. The trait bound ensures the
two have the same lattice type, but they may have dif-
ferent representations.

9

Mingwei Samuel

Table 3: Topologically Interesting Operators

Description Diagram

MorphismOp, MonotoneOp,
SplitBinaryMorphismOp:

User-de�ned monotonic
functions.

5 : S ! T
S delta,
cum.⇤

T delta,
cum.⇤

� : S ! TS cum. T cum.

6 : R ⇥ S ! T
R⇥S, both T, both

StateMergeOp: Merges
deltas, outputs
cumulatives and
minimized deltas.

tX
X

delta
X

delta & cum.

MergeOp: Merges two
streams into one:
interleaves elements and
merges cumulatives.

X delta, cum.⇤

X delta, cum.⇤
X

delta, cum.⇤

SplitOp: Splits a stream;
copies input elements to
each output.

X

delta, cum.⇤

X delta, cum.⇤

...

SwitchOp: Splits Pairs
to two outputs without
copying.

Pair<X,Y>

delta, cum.⇤

X delta, cum.⇤

Y delta, cum.⇤

Channel, network Ops:
Sends deltas across thread,
network boundaries.

X delta X delta

⇤These operators can have cumulative output if the input is cumulative.

The Merge trait implements a merge function between
possibly di�erent representations for a given lattice type.
The function is asymmetric: an other value is merged in-
place into this. Naturally, not all lattice representations
can be merged into; for example you cannot merge into a
Single<T>, Option<T>, or �xed-size array for a set-union
lattice. There are similar traits for computing partial ordering
of lattice elements, converting between lattice representa-
tions, minimizing delta elements, et cetera. This creates a
�exible system where speci�c properties of lattices can be
ensured at compile-time via traits.

4.2 Operators
Operators are the core building block of H�������� pro-

grams. Operators are another layer of abstraction above mor-
phisms and monotonic functions. Certain operators simply
take in user-de�ned monotonic functions and execute them,

1 pub trait Op {
2 /// The output element type of this op.
3 type LatRepr: LatticeRepr;
4 }
5

6 pub trait OpCumulative: Op {
7 fn get_cumulative(&self)
8 -> Hide<Lb, Self::LatRepr>;
9 }
10

11 pub trait OpDelta: Op {
12 fn poll_delta(&self, waker: Waker)
13 -> Poll<Option<Hide<Delta, Self::LatRepr>>>;
14

15 /// Ordering metadata (example).
16 type Ordering: Order;
17 }

Figure 9: A simpli�ed version of the Op trait. Each
implementer de�nes the possibly-generic associated
::LatRepr type it outputs, and then separately imple-
ments OpDelta and/or OpLb (for outputting deltas and
cumulatives respectively).

but in general operators can do much more than that. Op-
erators can store state, control pipeline timing and execu-
tion, split or merge pipelines, or send data across thread
and network boundaries. Some of the operators provided by
H�������� are listed in Table 3.
Internally all H�������� operators implement the Op

trait which is shown in Figure 9. Alone, the Op trait only
de�nes an associated ::LatRepr type to specify the opera-
tor’s output lattice type and its representation. Usually this
is not a single speci�c type but one de�ned through generic
parameters constrained by trait bounds. Ops are then re-
�ned further: those which output delta values implement
OpDelta, and those which output cumulative values imple-
ment OpCumulative. An operator can implement both or
either, possibly conditionally based on trait bounds. The
Op traits themselves do not de�ne operator inputs, instead
operators take ownership of upstream operator(s) and inter-
nally call the upstream operator’s functions. In this struc-
ture each operator owns the previous operator, and there-
fore transitively owns the whole previous pipeline back to a
node boundary or dynamic split point. This allows the Rust
compiler to optimize pipelines of operators as single units
through monomorphization—the specialization of polymor-
phic de�nitions to a speci�c type [22].
The OpCumulative trait requires a simple get_cumula-

tive method which synchronously returns a cumulative
value. This method usually involves propagating the call
backwards to the nearest LatticeStateOp and then each
operator makes any changes to the cumulative value before

10

Hydroflow: A Model and Runtime for Distributed Systems Programming

returning it back to the caller. This means that when new op-
erators are added to the data�ow graph, we can immediately
and synchronously invoke this method to replay all missed
history and send it to the new operator without waiting.
The OpDelta trait is a little more complex, and is struc-

tured to work with streams from Rust’s asynchronous frame-
work. poll_delta returns a Poll algebraic data type which
can be either Ready(value) or Pending. This setup gives
H�������� easy user-thread scheduling and non-blocking
execution. An async runtime keeps a list of all these tasks
and polls them in a loop. To prevent unnecessary polling, a
Waker is used to signal to the runtime when a task is ready
to be polled. We currently use T����7 as our async runtime
and scheduler.
Metadata is represented using tag types associated with

each operators. Figure 9 lists an Ordering associated type as
an example of this; a marker type would be used to denote a
particular ordering (or lack thereof) of delta elements, and
this ordering can be checked when operators are composed.
For example a ZipOp which pairs deltas from two operators
together would require those operators have the same order-
ing (among other things) to ensure determinism. We expect
to represent many di�erent types of metadata in this way.

5 ONGOING & FUTUREWORK
H�������� is very much a work-in-progress. As a driving
use case we are implementing a key-value store using H��
�������; this work is brie�y described in subsection 5.1.
Subsection 5.2 describes current work to better implement
dynamic graphs in H��������. And �nally we describe
some practical improvements to H��������: a surface syn-
tax in subsection 5.3 and tooling in subsection 5.4.

5.1 Key-Value Store Prototype
We are implementing a basic key-value store in the style of
A��� to test the expressiveness and speed of H��������.
A���’s state is phrased in a monotonic way at a high-level,
but it does not directly ensure monotonicity in its C++ im-
plementation. Additionally A��� does not attempt to model
clients of the KVS as monotonic. In H�������� we would
like to ensure as much of a system is monotonic as possible,
however modelling one-o� reads as monotonic has turned
out to be very tricky.

A KVS can be modelled as taking in a stream of requests,
splitting those into reads and writes, and then simply join-
ing those streams together as shown in Figure 10. In this
case, the write tuples are (key, value) pairs and the read
tuples are (key, reader) pairs where reader identi�es the
requester of the read; these two streams are joined on key
as shown in Figure 10. An equivalent design would be to
7https://github.com/tokio-rs/tokio

Z

reads

writes

requests responses

Figure 10: A key-value store expressed as a join be-
tween reads and writes through time. Requests are
split into reads and writes, then stored in hash tables.
Then each read request is joinedwith the storedwrites
using the data key. The highlighted violet operators
form a symmetric hash join as in Figure 4.

reads as
pipes

writes

requests
responses

...

Figure 11: A key-value store expressed using “pipes
in pipes.” Each read is converted into a dynamic pipe
which is then attached to the output of the write stor-
age. This is done by the violet DynamicSplitOp. Each
new pipe projects the write state to its read key and
sends it to the requester.

create new response pipes for each read and dynamically
connect those pipes to the writes as shown in Figure 11. Each
new pipe probes the write cumulative view for a read key
and then sends the value to the requester. However both of
these designs have the same design �aw: these “reads” are
actually subscriptions rather than just one-time reads, so
this is e�ectively a pub-sub system rather than a key-value
store. The join will continue outputting updated values after
the �rst, and the new pipes will continue to carry updates
as well.
The root cause of this problem is that one-o� reads of

monotonically-growing state are simply not monotonic. The
state is growing through time, and when a read arrives it
intercepts that growing state at an arbitrary point. Any net-
work delays or reordering of reads with writes will cause
a di�erent value to be read, creating non-deterministic and
therefore non-monotonic behavior. Although this problem
shows that expressing programs inH�������� can be tricky,

11

https://github.com/tokio-rs/tokio

Mingwei Samuel

it also shows how H�������� can ensure monotonicity in
the face of developer error.
We are pretty close to �nding a way to express one-o�

reads in H��������, and the solution will probably involve
clever use of > pipes and careful framing of monotonicity.
Another option will be to limit monotonicity guarantees
down to cover only the KVS state like A��� does,
We will eventually implement other features of A���

such as recovery, key repartitioning, and multi-node scal-
ing. These high-level features will require non-monotonicity
and coordination and will provide a driving use-case for
H��������.

5.2 Dynamic Graphs
The current implementation works well for static graphs.
Operators take full ownership of their predecessors, and the
Rust compiler optimizes pipelines of chained operators. How-
ever for dynamic graphs, this implementation is not very
ergonomic. Dynamic additions naturally cannot take owner-
ship or be optimized at compile time, so we currently have
to use separate adaptors to link dynamic pipelines together.
Additionally, using the T���� async runtime is convenient,
but creates some tricky cases where we have to wait for
elements to �nish �owing before we can modify the graph.
To �x this we can add another abstraction layer on top

of operators to handle dynamic pipeline segments. This
two-tiered approach may allow us to retain the bene�ts of
compile-time optimizations and ownership while handling
dynamic segments more easily. The lower layer will act in
the same way as current operators.

Meanwhile, the new higher layer can treat each segment
from the lower layer as a single unit or edge in a fully dy-
namic graph. Additionally since dynamic changes in the
graph depends on state, we can also handle all StateMerge-
Op state at the higher layer. Similarly, we can replace T����
runtime by handling asynchronous operators (such as time-
based batching) at the higher layer as well.

5.3 Surface Syntax (DSL)
H�������� provides a model for cloud programming which
is similar to data�ow. However because it is currently imple-
mented as a Rust library, right now aH�������� program is
simply Rust code. This means developers are forced to learn
Rust—which is known for its steep learning curve [20]—in
order to assembleH�������� graphs and setup the runtime.
Additionally, general Rust code is di�cult to interpret by
automated tooling, and in the future we want to do a lot of
static analysis and optimization on H�������� graphs.

To solve these problems, we are designing a “surface syn-
tax” DSL as a layer above Rust. This language will be used to
specify the important parts of H�������� programs, such

as lattices, operators, graph topography, dynamic attach-
ment points, useful metadata, and so on. All Rust-speci�c
bootstrapping code is excluded. Tools will be able to analyse
these speci�cations directly and easily. Operators and cus-
tom lattices will be able to contain Rust code, and later we
can add support for other languages. For now we will use
Rust’s procedural macro system to convert surface syntax
programs directly into Rust, allowing us to handle Rust code
directly without any special considerations.

5.4 Tooling
Custom tooling will be important to make understandable
and correct H�������� programs. As a compilation target
for the Hydro Project, easy-to-use tooling will be essential
for debugging and optimizing H����L���� programs. H��
������� programs are structured as graphs so naturally we
would like to visualize those graphs, similar to what B����
[2] does. Many properties such as edge metadata, points of
order, non-monotonicity, and so-on can be displayed in the
generated graphs.

6 CONCLUSION
The cloud provides great opportunity for general distributed
applications, but current programming models make rea-
soning about distributed systems incredibly di�cult. H��
������� uses the lens of monotonicity to provide a simpli-
fying view of distributed computing. In this paper we provide
a mathematical model which uni�es data�ow and reactive
programming. H�������� extends this mathematical foun-
dation with compositional lattice types, binary operators,
constructive monotonicity, and explicit non-monotonicity.
The current implementation of H�������� provides a

solid foundation for future work. Our lattice composition sys-
tem separates lattice types from their representations which
lets us directly model lattices in code without compromising
on performance. We are continuing work on implementing
better dynamic graph handling, coordination mechanisms
for non-monotonicity, and data partitioning in space across
nodes. In the future we plan to add a custom surface syntax
and implement useful tools for developers. Our goal is to
make H�������� a fully-featured and usable programming
framework for the cloud.

ACKNOWLEDGMENTS
My thanks goes to my advisors Prof. Joseph M. Hellerstein
and Prof. Alvin Cheung, and to Dr. Mae Milano for their
leadership and guidance in this project. And to my friends
for supporting me through tough times.

12

Hydroflow: A Model and Runtime for Distributed Systems Programming

REFERENCES
[1] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,

Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. 2015. The
Data�ow Model: A Practical Approach to Balancing Correctness, La-
tency, and Cost in Massive-Scale, Unbounded, out-of-Order Data Pro-
cessing. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1792–1803. https:
//doi.org/10.14778/2824032.2824076

[2] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R.
Marczak. 2011. Consistency Analysis in Bloom: a CALM and Collected
Approach. In Fifth Biennial Conference on Innovative Data Systems
Research, CIDR 2011, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings. CIDR Conference, Asilomar, CA, USA, 249–260. https:
//people.ucsc.edu/~palvaro/cidr11.pdf

[3] Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Heller-
stein, David Maier, and Russell Sears. 2011. Dedalus: Datalog in Time
and Space. In Datalog Reloaded, Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Sellers (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 262–281.

[4] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. 2013. A Survey on Reac-
tive Programming. ACM Comput. Surv. 45, 4, Article 52 (Aug. 2013),
34 pages. https://doi.org/10.1145/2501654.2501666

[5] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jor-
gen Thelin. 2014. Orleans: Distributed Virtual Actors for Pro-
grammability and Scalability. Technical Report MSR-TR-2014-
41. https://www.microsoft.com/en-us/research/publication/orleans-
distributed-virtual-actors-for-programmability-and-scalability/

[6] Alvin Cheung, Natacha Crooks, Joseph M. Hellerstein, and Matthew
Milano. 2021. New Directions in Cloud Programming. In 11th Con-
ference on Innovative Data Systems Research, CIDR 2021, Virtual Event,
January 11-15, 2021, Online Proceedings. CIDR Conference, Asilomar,
CA, USA. http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf

[7] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein,
andDavidMaier. 2012. Logic and Lattices for Distributed Programming.
In Proceedings of the Third ACM Symposium on Cloud Computing (San
Jose, California) (SoCC ’12). Association for Computing Machinery,
New York, NY, USA, Article 1, 14 pages. https://doi.org/10.1145/
2391229.2391230

[8] Brian A. Davey and Hilary Priestley. 2002. Introduction to Lattices and
Order. Cambridge University Press, New York, NY, USA.

[9] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simpli�ed Data
Processing on Large Clusters. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation - Volume 6
(San Francisco, CA) (OSDI’04). USENIX Association, USA, 10.

[10] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó
Araújo, Martin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert
Morris. 2018. Noria: dynamic, partially-stateful data-�ow for high-
performance web applications. In 13th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 213–231. https://www.usenix.org/conference/osdi18/
presentation/gjengset

[11] Pat Helland and David Campbell. 2009. Building on Quicksand.
CIDR Conference, Asilomar, CA, USA. https://dsf.berkeley.edu/cs286/
papers/quicksand-cidr2009.pdf

[12] Joseph M. Hellerstein and Peter Alvaro. 2020. Keeping CALM. Com-
mun. ACM 63, 9 (Aug. 2020), 72–81. https://doi.org/10.1145/3369736

[13] Lindsey Kuper and Ryan R. Newton. 2013. LVars: Lattice-Based Data
Structures for Deterministic Parallelism. In Proceedings of the 2nd
ACM SIGPLAN Workshop on Functional High-Performance Computing
(Boston, Massachusetts, USA) (FHPC ’13). Association for Comput-
ing Machinery, New York, NY, USA, 71–84. https://doi.org/10.1145/
2502323.2502326

[14] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked
algorithms and Task Scheduling. In Proceedings of the 14th Python in
Science Conference, Kathryn Hu� and James Bergstra (Eds.). 126 – 132.
https://doi.org/10.25080/Majora-7b98e3ed-013

[15] Frank McSherry, Derek Murray, Rebecca Isaacs, and Michael Isard.
2013. Di�erential data�ow. In Proceedings of CIDR 2013. CIDR Confer-
ence, Asilomar, CA, USA.

[16] Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: A Language
for Distributed, Eventually Consistent Computations with CRDTs. In
Proceedings of the First Workshop on Principles and Practice of Consis-
tency for Distributed Data (Bordeaux, France) (PaPoC ’15). Association
for Computing Machinery, New York, NY, USA, Article 7, 4 pages.
https://doi.org/10.1145/2745947.2745954

[17] Mae Milano, Rolph Recto, Tom Magrino, and A. Myers. 2019. A
Tour of Gallifrey, a Language for Geodistributed Programming. In
SNAPL. https://drops.dagstuhl.de/opus/volltexte/2019/10554/pdf/
LIPIcs-SNAPL-2019-11.pdf

[18] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework
for Emerging AI Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 561–577. https://www.usenix.org/conference/osdi18/
presentation/moritz

[19] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. 2013. Naiad: A Timely Data�ow System.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (Farminton, Pennsylvania) (SOSP ’13). Association
for Computing Machinery, New York, NY, USA, 439–455. https://doi.
org/10.1145/2517349.2522738

[20] Je�rey M. Perkel. 2020. Why scientists are turning to Rust. Nature 588,
7836 (Dec. 2020), 185–186. https://doi.org/10.1038/d41586-020-03382-2

[21] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-
Rocquencourt ; INRIA. 50 pages. https://hal.inria.fr/inria-00555588

[22] Akira Tanaka, Reynald A�eldt, and Jacques Garrigue. 2018. Safe
Low-level Code Generation in Coq Using Monomorphization and
Monadi�cation. Journal of Information Processing 26 (2018), 54–72.
https://doi.org/10.2197/ipsjjip.26.54

[23] A.N. Wilschut and Peter Apers. 1991. Data�ow query execution in a
parallel main-memory environment. In Proceedings of the First Inter-
national Conference on Parallel and Distributed Information Systems.
68–77. https://doi.org/10.1109/PDIS.1991.183069

[24] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein.
2018. Anna: A KVS for Any Scale. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE). 401–412. https://doi.org/10.
1109/ICDE.2018.00044

[25] Junyi Xie and Jun Yang. 2007. A Survey of Join Processing in Data
Streams. Springer US, Boston, MA, 209–236. https://doi.org/10.1007/
978-0-387-47534-9_10

[26] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (Boston, MA) (HotCloud’10). USENIX Association,
USA, 10.

13

https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824076
https://people.ucsc.edu/~palvaro/cidr11.pdf
https://people.ucsc.edu/~palvaro/cidr11.pdf
https://doi.org/10.1145/2501654.2501666
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
https://www.microsoft.com/en-us/research/publication/orleans-distributed-virtual-actors-for-programmability-and-scalability/
http://cidrdb.org/cidr2021/papers/cidr2021_paper16.pdf
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1145/2391229.2391230
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://dsf.berkeley.edu/cs286/papers/quicksand-cidr2009.pdf
https://dsf.berkeley.edu/cs286/papers/quicksand-cidr2009.pdf
https://doi.org/10.1145/3369736
https://doi.org/10.1145/2502323.2502326
https://doi.org/10.1145/2502323.2502326
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.1145/2745947.2745954
https://drops.dagstuhl.de/opus/volltexte/2019/10554/pdf/LIPIcs-SNAPL-2019-11.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/10554/pdf/LIPIcs-SNAPL-2019-11.pdf
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1038/d41586-020-03382-2
https://hal.inria.fr/inria-00555588
https://doi.org/10.2197/ipsjjip.26.54
https://doi.org/10.1109/PDIS.1991.183069
https://doi.org/10.1109/ICDE.2018.00044
https://doi.org/10.1109/ICDE.2018.00044
https://doi.org/10.1007/978-0-387-47534-9_10
https://doi.org/10.1007/978-0-387-47534-9_10

	Abstract
	1 Introduction
	1.1 Related Work

	2 Theory
	2.1 Dataflow
	2.2 Reactive Programming

	3 The Hydroflow Model
	3.1 Delta and Cumulative Edges
	3.2 Binary Operators and Joins
	3.3 Dynamic Graphs
	3.4 Other Aspects of Hydroflow

	4 Implementation
	4.1 Lattices
	4.2 Operators

	5 Ongoing & Future Work
	5.1 Key-Value Store Prototype
	5.2 Dynamic Graphs
	5.3 Surface Syntax (DSL)
	5.4 Tooling

	6 Conclusion
	Acknowledgments
	References

